
Sekhmet: secure chatting during examination

M. Brattinga, D. Ludjen, J. van der Schaaf, J. van der Waal, B. Willemsen

Supervised by: dr. T. van Dijk and prof.dr. M. Huisman

16 April 2021

Abstract

Face-to-face communication during exams can be disturbing -and due to COVID-
19, dangerous- for students. To minimize these risks, we built a web app for the
University of Twente to facilitate supervisors handling students’ questions and
making announcements during exams. This was done by creating a real-time
chat application where for every student there is a conversation with the student
on one side and all supervisors collectively on the other. There is also a global
”announcements”-conversation accessible to all students where only supervisors
are allowed to write. The authorization is managed through the existing Uni-
versity of Twente single-sign-on-system, cross-referenced with courses and tests
imported from existing Canvas administration. The minimum-viable product is
functional (minor bugs notwithstanding), however, the use of unfamiliar tools
along with a lack of vigilance during development made the final product fall
short compared to original designs.

Acknowledgements

We want to thank several people who made it possible to realize this project:

• our supervisors, Tom van Dijk and Marieke Huisman, for their support,
constructive feedback and their continuing belief in us even when times
were bleak.

• Rafael Dulfer for providing design suggestions on dealing with University
of Twente intergrations and together with Floris Breggeman helping to
set up the production environment.

• Ard Kosters and André Brands from LISA for their information for the
integration with Canvas and the needed information for the Single Sign-
On.

• lastly, our testers that were willing to break our system.

Contents

1 Introduction 3

2 Glossary of Terms 4

3 Stakeholders 6

4 Requirement analysis 7
4.1 Requirement specification . 7
4.2 Requirement prioritization . 7
4.3 Requirements . 7

4.3.1 Must . 8
4.3.2 Could . 9
4.3.3 Won’t . 10

5 Design 11
5.1 Technologies . 11
5.2 Server structure . 12
5.3 Real-time communication . 20
5.4 UI design . 21
5.5 Security . 33
5.6 Error handling . 35

6 Ethical considerations and security 38
6.1 Security . 38
6.2 Authorization . 38

7 Testing 40
7.1 Internal system tests . 40
7.2 Usability tests . 41
7.3 Rigidity tests . 43
7.4 Exploratory tests . 44
7.5 Discussion . 44

1

8 Reflection 46
8.1 Group reflection . 46

8.1.1 Technologies . 46
8.1.2 Design . 48
8.1.3 Teamwork & Organisation 50

8.2 Individual reflections . 54
8.2.1 Ben . 54
8.2.2 Dion . 56
8.2.3 Jan . 56
8.2.4 Jurre . 57
8.2.5 Martijn . 59

9 Conclusion 61
9.1 Project recap . 61
9.2 Delivered system . 61
9.3 Future . 61

2

Chapter 1

Introduction

During examinations, communication between supervisors and teachers might
be needed. Students might have questions and or supervisors might have an-
nouncements about the exam. Currently, teachers or teaching assistants walk
to the student who raised his hand, to answer the questions, but this movement
and conversing can have a negative impact on the concentration of fellow stu-
dents. This project brings a solution, which is a chatting system for student
to teacher, teacher to student, and teacher to teacher communication, to omit
walking and talking entirely.

The product is a web app, such that it works independent of an operating
system, to which students and supervisors must log in using their University of
Twente credentials. In this application, the student can ask questions during a
test. Supervisors can answer these questions, communicate with each other in
another chatroom (invisible to the students), and send announcements to the
group of students. This last bit is especially advantageous in a room where not
all students are taking the same test, since in the current situation you would
distract all students in the room, instead of only the ones the announcement is
meant for.

The web app has partial Canvas integration so that it can use the database
of the university to retrieve some structures without users having to define ev-
erything. As the focus is on intuitiveness and ease of use, the Canvas integration
and aforementioned university login should make it simple and intuitive to use.

The system has five roles for people: administrator, module coordinator, teacher
(supervisor & employee), teaching assistant (supervisor & non-employee), and
student. These roles are explained in chapter 2. Everyone in the system has one
of these roles for a test (the admin has their role always). When we talk about
the permissions of a user, we mean the general permissions of their respective
role. It is not possible to add single permissions to users, only to give a role to
a user.

3

Chapter 2

Glossary of Terms

System admin (administrator)
An administrator is a user who has access to the entirety of the system, regard-
less of who is supposed to “own” any given part. While the system is designed
to avoid this being necessary, the administrator is assumed to have access to
the technical back-end of the system. An administrator is assumed to not have
any of the other roles mentioned here, though the design will not prohibit this
as a possibility. The administrator is only used as backup access, for instance,
if a coordinator becomes ill or cannot log in anymore.

Student
A student is a student. By default students are only allowed to view tests they
are given and ask questions for them. Critically, a student is never a teacher,
but they can be a supervisor (TA) in a test they are not also student for.

Teacher
A teacher is an employee at the University of Twente, who may be coordinating
a module or supervising a test. Critically, a teacher is never a student.

(Module) Coordinator
A coordinator is a teacher who is the module coordinator for a specific module.
Every module has precisely one coordinator. If a teacher imports a module
they are part of, that teacher becomes the module coordinator. This task can
be transferred.

Supervisor
A supervisor is anyone associated with a test who is not taking that test. While
the coordinator is certainly in a supervising role, “supervisors” mainly refer to
teachers and TA’s that answer questions during tests.

4

TA
A TA (teaching assistant) is a student who is a supervisor. This means a
TA might have a test-taking role in one module while having a supervising
one in another. While within a module a TA has the same rights as those
supervisors that are teachers, a TA may not make new modules, and may not
be a coordinator.

5

Chapter 3

Stakeholders

There are some affected parties associated with our system. Here we will men-
tion the most prominent ones.

Teachers are part of our direct target users. The program is supposed to
make it easier for them to answer questions. However, some may have a negative
disposition to other teachers reading their answers, or they don’t like the answers
being stored.

Students embody the largest subset of our target users. Although it might
be less frightening to ask a question in writing, students might have the same
problem as teachers about storing data, or that their question can be read by
all teachers.

University of Twente is the client. They get the advantages of stored ques-
tions, which might influence grading or lecture structures. They also have all the
responsibility to remove data and handle the European Privacy Laws (GDPR)
on ”right to be forgotten” and such.

Other stakeholders might include hardware producers on which our system
would run, competitors, people that can’t use our system due to dyslexia, or
other restrictions. Those are not regarded in this report, since they are either
secondarily affected, or they would have a need for special architecture anyway.

6

Chapter 4

Requirement analysis

4.1 Requirement specification

As this project was commissioned by the University of Twente, most of the
requirements are extracted from the project assignment during the first weeks.
Further requirements were given by T. van Dijk and M. Huisman during super-
visory sessions in the first weeks. We converted all given requirements to be
tangible and specific, such that the development team and the clients have the
same understanding of what the system will look like. This list of must, could,
and won’t requirements can be found in section 4.3.

4.2 Requirement prioritization

As the time frame for this project was merely 10 weeks, we had to specify which
requirements lay in the scope of this project, and which did not. Therefore,
we separated the list of requirements into must and could. This separation
was made based on what we determined as a minimum workable system to
be used during exams. This includes some basic course and test management,
chatting (teachers with each other, student to all teachers, and visa versa), mak-
ing announcements, editing and deleting functionality for messages, some basic
indication to see if another teacher is replying, and a backlog. Any further im-
provements that would increase the functionality or improve the user experience
were considered could requirements.

4.3 Requirements

The list of requirements is shown below, as well as an explanation to what extend
those requirements are implemented. All must requirements are implemented.
There are no could requirements implemented.

7

4.3.1 Must

• The system must have a connection with Canvas to allow the import of
modules, tests, and people with their role;
This is implemented based on Canvas API tokens. The full integration
with Canvas login is implemented, but not ready for production yet (see
section 5.2, Canvas integration).

• Staff and students must be able to log in using University of Twente cre-
dentials;
This is implemented such that everyone with University of Twente creden-
tials can log in via the their Single Sign-On.

• A role-based permission system with different roles for the system admin,
the module coordinator, supervising staff, and students must be imple-
mented;
This is implemented (as described in section 5.2, Authorization) and en-
sures privacy and security.

• The system must allow conversations to be flagged as being answered;
This is implemented as chats being automatically assigned to a supervisor
when it starts typing. Manually removing the assignment is possible, man-
ually changing to another supervisor is not. The state is not persistent.

• The system must show which chats are unread, and provide the ability to
mark chats as unread again;
This is implemented as unread states for every chat. The state is auto-
matically changed on events, and can manually be changed too. The state
is persistent, and shared among all supervisors.

• All teachers must be able to see all communication. Students must not be
able to see each other’s messages;
This is implemented as supervisors can access all student chats containing
messages, and students are restricted to only see announcements and their
own question chat.

• Messages must be persistent

– After the test, the teacher must be able to see a log of the test until
it is formally closed;

– After the test, only the module coordinator must be able to see the
complete log;

– After re-login, users must see their own chat history if the test is still
ongoing;

This is implemented by storing all messages in the database and retrieving
them on loading the chat. A backlog is available for the module coordi-
nator that also includes previous versions of edited messages, and deleted
messages.

8

• Supervisors must be able to make announcements, which remain visible
for users who lose connection or log in later;
This is implemented with the announcement chat and announcement pop-
up and notifications. Announcements are stored in the database, and on
loading the chat, announcements are the first thing shown.

• Supervisors must be able to communicate with each other via a group
chat;
This is implemented with the supervisor group chat.

• The system must have an intuitive user experience that complies with
other apps of the University of Twente and make efficient use of screen
space
The user interface is made as minimalist as possible and follows patterns
of other software most users should be familiar with.

• The system must be a web app, able to run on Chromebooks;
This is implemented. The system is a web app, and is able to run on
Chromebooks.

• The system must have a fallback system admin who can access everything;
This is implemented by the system admin role that can be assigned to a
user, which overrules all required permissions.

• It must be possible for supervisors to delete and edit messages, in the
sense of making them invisible in the chat while keeping them in the logs;
This is implemented by giving supervisors the option to edit their own
messages, as well as deleting any messages (including of others, and an-
nouncements). The full history of edited messages as well as deleted mes-
sages are kept in the database and are included in the exported backlog.

• The system must offer a way for tests to be grouped per module;
This is implemented by linking all tests to a module and showing the tests
per module on the overview page.

• The coordinator must be able to delete the complete backlog of a test.
This is implemented by the download backlog functionality, which includes
all data the system has for a particular test.

4.3.2 Could

• Supervisors could be able to communicate with each other via private
chats;

• Supervisors could be able to send files as attachment to announcements
or chats to be able to distribute files;

9

• The system could have an indication of waiting time, shown to the teacher
interface;

• The system could offer a way to send files (including pictures);

• The system could offer a way to capture a screenshot of Remindo1, crop
it as desired, and send it as a file;

• The system could offer a way to draw on the captured screenshots before
sending;

• The system could send chat messages while typing, character by character
to improve response time. This is only desired for students to teachers
and teachers to teachers, not for teachers to students; Not implemented.
However, the state whether a user is typing, is actually shared. This same
system could be extended to send the content of the temporary message.

• The student could determine the subject of the question before actually
asking a question, making it easier for the supervisors to decide who is
going to answer that question;

4.3.3 Won’t

• The system won’t support audio communication;

• The system won’t support group tests/exams;
We believe that the extra infrastructure required for this feature would not
be worth its limited use-case

• The system won’t support interactive screen sharing

1https://utwente.remindotoets.nl/

10

Chapter 5

Design

5.1 Technologies

Front-end

For the front-end, the Vue1 framework, written in Javascript, is used. The
choice of a front-end framework was made to speed up development and allow
us to create a better user experience. With such a reactive framework, creating
dynamic pages is made easy as it provides some structure and default behavior
for certain functionality. As a Vue project is made out of many Vue components,
features can be separated into different files to create a clear project structure.
The Vue Router2 is used for routing the front-end page. For state management
Vuex3 is used, as this allows for a shared state between the separate Vue com-
ponents. Vue Bootstrap4 is used to speed up layout and style implementation.
This bootstrap library contains a lot of default styles, as well as components
you can easily implement. For instance forms, pop-ups, menus, layouts, and
lists can be used, such that we only had to focus on the behavior, and not on
the implementation of default functionality. For the WebSockets, the standard,
browser-native WebSockets will be uses, as documented in the MDN Web Docs5.

Back-end

For the back-end, the Spring framework6 in Java is used. The Spring frame-
work essentially provides the basic implementations and the core structures
that are needed for the creation of a web application, wrapping tomcat7, using

1https://www.vuejs.org
2https://router.vuejs.org/
3https://vuex.vuejs.org/
4https://bootstrap-vue.org/
5https://developer.mozilla.org/en-US/docs/Web/API/WebSockets API
6https://spring.io/
7https://tomcat.apache.org/

11

Thymeleaf8 for page serving and inserting the CSRF token on page-load. These
implementations can then be applied by simply using the corresponding anno-
tations in the Java classes. The intention is then that this would have allowed
us to focus more on the implementation of features, over the setup of infras-
tructure. The decision on this framework was also based on suggestions from
the LISA department. If the software of this project is to be used in the future,
which was our aim, it would have to be maintained at the University of Twente.
The University of Twente mainly uses Java with Spring as the back-end for
their systemsnx and would like new projects to use that too. In this way, they
can easily maintain their projects. In addition to Spring framework, the build
system Maven9 is used for dependencies management. For the WebSockets, the
standard raw tomcat implementation is used, inherited to be a native part of
Spring boot. In order to help manage the communication with the front-end, all
of which is done in JSON, we use Gson10 to manage the dynamic construction
of these messages.

Database

The database, in which all data of the application is stored, runs on a MySQL
server. Accessed using the Hibernate11 and JPA12 frameworks for Java. These
libraries access the database automatically and store information in local mem-
ory as an entity. It is UTF8-encoded to allow for Unicode13 characters. The
structure will be explained in chapter 5.2.

5.2 Server structure

Database design

The database will be a MySQL database with 6 tables, as seen in figure 5.1.

8https://www.thymeleaf.org/
9https://maven.apache.org/what-is-maven.html

10https://github.com/google/gson
11https://hibernate.org/
12https://spring.io/projects/spring-data-jpa
13https://unicode.org

12

Figure 5.1: UML diagram of database structure

The users table will contain all necessary information on the user. The user ID
is the same as the one in the University of Twente’s databases, and defines the
user uniquely. The name is for ease of use in the user interface: knowing who is
chatting with who or for deleting enrollments for example. The email addresses
are stored, currently this is used only to allow searching users by email address,
and only for the teachers. Lastly it stores whether or not the person is an em-
ployee, which allows them to import information from Canvas, and whether a
person is a system admin, who is allowed full access, see chapter 2. The Canvas
token is also stored here, so that an employee does not have to retrieve it each
time they want to access Canvas.

The enrollment table is mostly a pivot table of users and tests, with as in-
clusion the role for that person for that test. This means that a user can have
exactly one role for a test.

13

The course table contains the basic information of a course, but for our UI
we only needed the Canvas ID, which we will also use as a unique ID, and the
name. The teacher that imports the course is automatically attached to the
course as module coordinator to let the system know who has all responsibili-
ties, see chapter 2. The timestamp of creation is stored for sorting the courses
in the UI.

All tests in the tests table are attached to a course. The tests have a start
time and end time, which are defined upon starting and ending a test, not be-
forehand. An active test is defined as a test with a start time and without an
end time. The test also stores which conversations are the announcement and
teacher conversation for that test.

The conversations table gives a unique conversation ID to every student in
a test upon starting that test. This ID is auto-generated. All announcements
are also stored in a specific conversation for that test, to make lookup easier.

The messages table stores all sent messages. If a message is altered this message
will be saved with the same ID and a different timestamp, so an altered mes-
sage is a message with the same ID, sender and chat, but a different timestamp.
Deleted messages just get their visible field set to false. The reason the primary
key of this table is compound is that the front end never needs the server to
define the next message ID: it can just keep score of the number of messages
they sent (does not even need the amount of received messages because they
have a different sender), and then append that.

The database should be able to handle the standard Unicode characters, which
include cedillas, accents, and other symbols. This is done by encoding the
database in UTF8, which can be completely handled and implemented by the
database server.

Classes design

The back-end functions as the server, where business logic and data processing
are located. It handles the incoming requests from the front-end through HTTP
and REST API. Each request accepts input and provides outputs in the data
format JSON. In addition, the back-end also handles authorization processes
that decide whether a specific user is allowed access to the APIs. The general
structure of the back-end with file names is displayed in figure 5.2.

14

Figure 5.2: Server structure and file names

The back-end is divided into ‘layers’, interconnected, and each with it’s own
focus in order to provide a clear overview of the back-end structure especially
for system maintenance and/or expansion of the back-end. These layers are data
access, service, and controller. figure ?? shows the REST API flow including the
connection between the front-end and the controller as well as the connection
to the database.

Data Access
The data access layer handles the data retrieval process from the database. The
back-end utilizes the Spring Hibernate ORM to create abstract objects from the
database. These objects are classified as an entity where each entity is mapped
to a table in the database and are defined as Java classes in the back-end.
These entity classes provide getters and setters which further eases the process
of manipulating the data (or part of the data) in the database.

15

Figure 5.3: Back-end REST API Flow

16

Service
The service layer is the location of most business logic that happens in the back-
end. It connects the data access layer with the controller layer. Repositories,
an interface of the JPA (Java Persistence API), are used in order to provide
easier access to the database by allowing data retrieval simply by declaring
methods inside these repositories which will then return the mentioned entity of
the database. The methods inside the repositories are automatically converted
to database queries by the Spring Hibernate. Data from the data access layer
that require further processing are located in the Service classes where they
are grouped according to the repository they mainly access. The service class
that mainly accesses the conversation repository is named ConversationService,
other classes following a similar pattern. Simple requests such as getting a single
entity from the database are called directly from the repositories.

Controller
The controller is the main connection to the front-end where it allows access
to the back-end through a HTTP REST API. Types of HTTP request such as
GET, POST, PUT, and DELETE are each mapped to a specific URL and a
Java method using the @RequestMapping which then will be utilized by the
front-end to access the required HTTP requests. All API endpoints apply the
authorization checks, determining if a request by a user is allowed. More on
authorization will be defined on the subsection Authorization under the section
Security (section 5.5).

In the back-end, the REST API endpoints are grouped into Java classes based
on the type of entity representation of the database that the endpoint will ma-
nipulate. They are grouped into Conversation, Course, Enrollment, Test and
User. In addition, there exists a group named Error, however, the endpoints
inside of this class do not manipulate any entity representation of the database.
Instead, they write into a log file that functions as a storage for error logs.
The Java classes of the groups are named as RestConversationApiController for
Conversation group, with other groups following similar patterns. WebSocket
handlers are also located in this layer and more on this is described in detail in
the section Real-time communication section (section 5.3).

Canvas integration

To make setting up a new course with tests as uncomplicated as possible, mod-
ule coordinators can import courses and tests from Canvas. This is done using
the API of Canvas14. The API provides access to information from Canvas from
the users’ point of view. This information is used to set up the course, test(s)
and enrollments in the system. The Canvas system also supports OAuth2 to au-
thenticate the user, and give the system access to the users data in Canvas. The
implementation of the OAuth2 flow is done using the Spring Security OAuth2

14https://canvas.utwente.nl/doc/api/

17

library. Because this library is used and tested by many other developers and
users, we can assume most bugs are already found and resolved, thus we can
ensure the best possible security for our users.

Figure 5.4: Flow of the integration with Canvas. The blue color indicates the
alternative flow to authorize a Canvas user

Above in figure 5.4, the flow of the full Canvas integration is shown. At the
start, there are two possibilities to start. Both methods are implemented in the
system.

The original and intended implementation is using OAuth2, indicated in black

18

in figure 5.4. This process starts when a teacher clicks the ”connect to Can-
vas” button, so an OAuth2 flow is started between our applications server and
Canvas. The teacher is redirected to Canvas, where they have to authorize the
Sekhmet application to have access to their account, as can be seen in figure
5.5. Once approved, the teacher gets redirected back to our system. On return,
the system requests an access token from Canvas together with a refresh token
and stores them. The system can now make requests on behalf of the teacher.

Figure 5.5: Authorizing the Sekhmet application on Canvas

The second way to authorize a Canvas user is indicated in blue in figure 5.4.
This process is an alternative to the above because it turned out it was not pos-
sible to meet the requirements to use the production Canvas environment of the
University of Twente. This alternative process is meant to be replaced by the
process above when requirements are met. This process starts with a teacher
clicking the ’save Canvas token button’. Instructions are given to help teachers
create a custom API token in their Canvas account. Once made, teachers have
to paste this API token into a field on our application. After saving, the teacher
can proceed with the regular flow of choosing a course to import, where there’s
no difference in procedure.

Both methods above are implemented and in principle ready to use. The first
one, however, has been turned off and temporarily replaced by the second one
to make it possible to use the production environment of Canvas.

Now the system can request data from Canvas’ API, the integration can ac-
tually be used. As a first step in this process, the teachers get a list of all
available courses to import. For this, the server first retrieves all courses where
the user has the Teacher role. From this list, already imported courses are fil-

19

tered out. This can be easily done because, on import, the ID in our system is
set to the Canvas ID. Once the teacher has chosen the course, the next step is
to retrieve all groups and assignments from Canvas of the specific course. The
teacher can choose to use the already made assignments in Canvas for a test or
can create a custom test. For either of them, the teachers choose to import all
students from the course or to import students who are in a group in one or
multiple chosen groupsets.

The actual import of users happens in the next and last step in the flow. Once
the teacher submits the request of importing the course, all students from the
chosen groupsets and/or all students of the course are retrieved, together with
all teachers and TAs. The course is created with the same ID and title as in
Canvas. Also, the chosen assignments and custom assignments are created. For
each user to enroll, they will first be created if they are not in the system already.
This check is done based on ID (student ID or employee ID). When inserting,
the person name as registered in Canvas is used. Finally, the enrollment of the
user to the test is created in the database, with the corresponding role.

5.3 Real-time communication

Client-server connection
For an effective chat application, multiple clients have to be able to send and
receive messages in real-time. In order to avoid a repeated-polling system, we
use WebSockets between our clients and our server. Most messages have a list of
addressees, to which the server will forward the message, provided these clients
are allowed to communicate. Any message containing a state significant enough
to be stored (such as an actual send message between people as opposed to ”user
is typing”) is then also parsed and saved.

Registering, WebSockets & handlers
In order to set up basic WebSockets in Java Spring, a few components were
required. First is the handler, where the behaviour upon receiving a message
is defined. Notable about the handler, thanks to the nature of Spring’s doc-
umentation, is that the lifetime of the handler is unclear. As a result, a few
extra helper-singletons have been created where a more efficient implementa-
tion would have been possible if we knew for sure these handlers were scoped
to a single servlet or connection. This handler then needs to be registered to an
endpoint, at which point an interceptor is inserted in order to allow the HTTP-
context to be available so that the session authorisation can be carried over to
the WebSocket.

TheSecuredSessionHashmap
TheSecuredSessionHashmap is a helper singleton that enables the back-end to
act as a bridge for users to send each other messages. It does so by providing the
functionality of two key structures in regular networks: DNS and a Firewall.

20

It is designed to function akin to any standard map object, you attempt to
retrieve a WebSocket connection by the user ID of the connected person, and
you get the result if that user is also currently connected. Except that if you
are not allowed to contact that person they also appear disconnected. To do
this, however, all connections need to be registered, unregistered when closed,
and because the database query ”are these two people allowed to talk” is fairly
costly, all verified userID-pairs are saved and have to be wiped at the end of
every test.

WebSocket messages & parsing
As with most protocols that contain an element of routing, all messages send
to WebSockets are enclosed in a JSON wrapper containing the data the server
needs, defined as shown in 5.1.

Attribute Name Type
messageType String
receiverIds Array
message Object

Table 5.1: WebsocketMessage definition

The possible message types are message final, message delete, conversation unread,
conversation typing, conversation assigned & nack. Their detailed design and
usage will not be discussed here, since those are fairly straightforward, merely
containers for the data required to process the new information. We use Gson
to cast the incoming text messages to their corresponding models.

5.4 UI design

The main screen of Sekhmet is the chat itself, where communication between
supervisors and students happens. To manage the courses and tests, some other
screens are available as well. The content of pages is dependent on your role.
So, for every role, the page is based on the same template, but certain functions
are hidden if you don’t have access to them.

Every page contains a navigation bar with the name of the currently logged-in
user, as well as a button to log out and a button to go to the courses overview
page. On some pages where extra menu buttons should be visible, a sidebar is
present (i.e. in the supervisor’s chat screen, figure 5.7).

Chat

The chat page is mainly used during exams. There are two main versions of
this page, one for students (figure 5.6) and one for supervisors (figure 5.7).
The supervisor view shows additional features. First, the design choices of the

21

student chat page will be explained, after which we will dive into the supervisor
features.

Figure 5.6: Chat screen for students

The chat page starts with the page title, with the name of the test next to it.
They are stated at the top, such that there can be no doubt for students or
supervisors whether they are in the correct test.

If there is a new announcement, this is displayed in a green banner just un-
derneath the title. The color and location make sure that this announcement
hard to miss. This banner only displays the latest announcement, since that
is the one deserving the most attention. To read previous announcements, the
user can go to the announcement chat.

Switching to another chat, e.g. the announcement chat, can be done in the
chat list at the left. This list displays the available chats for the user, ordered

22

by the timestamp of the latest message. For a student, this defaults to a ques-
tion chat and an announcement chat. Per chat is indicated if it has unread
messages by a blue circle with the number of unread messages, such that users
can see which chats require attention. At the top of the chat list, there is a
counter of unread chats. This allows for a quick check to see if you have any
unread messages in any chat.

At the right side of the chat list, the message list covers the biggest part of
the screen. It starts with the name of the chat, then displaying a scrollable list
of all messages, and finally a text box with a button to send messages. Ev-
ery message in the message list contains the content of the message, as well as
the timestamp of the message. To distinguish between your own messages and
messages of the other party, they are respectively right and left aligned.

Figure 5.7: Chat screen for supervisors

Supervisors chat
The supervisor chat screen contains some additional features compared to the
student view. The sidebar is shown, linking to the test settings and people page.
These pages are explained in section 5.4. Starting with the title of the page,
next to the test name is a button to start or stop the test (depending on the
current state of the test). This prominent position is chosen to remind teachers
to open a test if it isn’t already, and close the test after the test has ended. As
such a prominent position might also trigger unintended button clicks, to close
the test a confirmation box (figure 5.8) asks to confirm the decision.

23

Figure 5.8: Confirmation pop-
up for stopping a test

Figure 5.9: Chat list for a su-
pervisor with features

The chat list for supervisors (figure 5.9) shows more chats than in the student
view. Besides the announcement chat, it shows a teacher group chat as well
as a chat for every student that has sent a message. Every student who hasn’t
sent a message in this chat before is hidden. By this, a long list of unneeded
chats is prevented. Note that a teacher can never initiate a conversation with
the student as empty chats are not shown.

For every chat, the supervisor has the option to mark the chat as read or un-
read. The student chats share this state for all supervisors, so if one supervisor
marks a chat as read, this chat is marked as read for all the other supervisors
as well. In this way, all supervisors are aware of which students did not get at-
tention yet, and which did. This marking as read can be done manually via the
chat options (by clicking three dots that are displayed when hovering a chat in
the chat list, and selecting the mark option), as well as automatically when an
unread chat is opened by a supervisor. The unread state of the announcement
chat and the teacher chat is not stored in the database, and thus not persistent,
as this would require storing the unread count for every person separately, and
not provide that much more value.

If a supervisor starts typing in a student chat, and the chat is not assigned

24

to another supervisor yet, that chat will be assigned to the supervisor who just
started typing. This is indicated by a green pillow in the chat, with the name of
the supervisor who is assigned to that chat. In figure 5.9 the chat with student
’Brattinga’ has been assigned to the user, as it states ’you’. This state is not
persistent, thus gone if reloaded the page, but the state is shared between all
supervisors. It is possible to manually remove the assignment. This assignments
enables supervisors to see if another supervisors is replying to a chat.

Figure 5.10: Indication that someone is typing in the chat

Another feature that helps supervisors determine if a chatting is currently being
answered by another supervisor, is the indication that someone is typing in a
chat. If another supervisor is typing in a chat, it is shown just above the input
box, as can be seen in figure 5.10. A supervisor is typing when the message
box of a chat is not empty, thus if the supervisor is thinking about his reply,
but already started typing the reply, other supervisors still know that the other
supervisor is replying. This typing state is shared between all supervisors but
is not persistent.

Students are not able to see which supervisor is assigned to their chat, or which
supervisor is typing in the chat. They also cannot see the sender of the messages.

Figure 5.11: Options per chat message available to a supervisor

25

For supervisors, messages in the message view display in addition to the con-
tent and the timestamp, also the sender of the message. This indicates which
supervisor has sent the message, which might be helpful information for super-
visors. Supervisors also have the option to delete any message and edit their
own messages. This is done via the three dots that appear when the user hovers
over a message.

Figure 5.12: Overlay for editing a message

If the supervisor wants to edit its message, a pop-up is displayed with a text
area to edit the message. If the blue ’ok’ button is pressed, the new message is
stored in the database and all people in the chat where the message is edited
are notified.

Figure 5.13: Appearance of a deleted message

If a message is deleted, the content of the message for everyone in the chat is
replaced by the text ’This message has been deleted’ as can be seen in figure
5.13. The original message is saved in the database, but a visibility field is set

26

to false. The original content is never served to the front-end anymore, but it
is present in the back-log of the test. Thus after a test, the module coordinator
always can see which messages were sent but deleted later.

Figure 5.14: Notice of spectator mode

A module coordinator or the system admin might not be enrolled in a test, is
still able to see the chat. Since the user is not enrolled, it is not part of any
conversation, and thus cannot send or receive chat messages. Therefore, this
mode is called spectator mode. To make the user aware that it is not able to
send or receive messages, on the top of the chat an informative pop-up is shown
(figure 5.14). On loading the page, all chat messages are shown. This is an
extra option to view a chat backlog in a slightly more pleasing view than the
CSV file.

Test management

There are two pages to alter test properties. One for general test settings, and
one for enrollments. The latter one is called the people page. This page (figure
5.15) displays a list of enrollments by role, as well as the ability to add and
import new enrollments.

27

Figure 5.15: Test people page

This people page also starts with a title indicating the name of the test, in the
same way, the chat page did. Then a scrollable list of students, a scrollable list
of supervisors, and the module coordinator are displayed. By the options menu
for enrollment, the three dots next to the name, enrollment can be removed (as
in figure 5.16). The module coordinator cannot be changed on this page, as
the module coordinator is not test specific, but course specific.

28

Figure 5.16: Remove enrollment
option Figure 5.17: Add enrollment option

Below the overview of enrollment there are two options to add enrollments. On
the left is the option to manually add a user that exists in the system, on the
right is an option to import a student set from canvas.

To manually add an enrollment, the supervisor can search for the user by name,
email or student number. Via the options per search result, by clicking on the
three dots next to the name, the user can be added as either a student or a
supervisor.

29

Figure 5.18: Import students to an existing test

To import enrollments from Canvas, the Canvas API token has to be set first.
If this canvas token is set, the bottom right section will be as figure 5.18. All
enrollments can be deleted, which can be an helpful feature if you want to redo
all enrollments. All students of the course can be imported, or specific groupsets
can be imported to the test.

Figure 5.19: Test settings page

Settings for a test that don’t have anything to do with enrollments can be found
on the test settings page (figure 5.19). This page allows to change the name of
the test, to start or stop the test (depending on the current state), to download
the backlog, or to remove the backlog.

30

The backlog buttons are only for the module coordinator. The deletion of
the backlog is not possible if a test is open (thus not closed yet). Deleting the
backlog also requires accepting a confirmation pop-up first (as in figure 5.8, but
with a different text).

Course management

The first page users see after logging in is the page showing all courses with
tests, as can be seen in figure 5.20. Note that if a student only has one test
active, this screen automatically redirects to that active chat. This prevents a
redundant click to open a test, when that is the only possible click a student
can do.

Figure 5.20: Courses overview page for a supervisor

The course overview shows every course in a list. A course can be expanded
to also show the list of tests. For employees of the university, this overview has
shortcuts to go to the test settings, to open the test, and to go the test chat.
For students, only the latter one is available.

For employees, there is also a button to import new courses (see the bottom
of figure 5.20). If the user already has set a Canvas API token, the user can
import a course with tests (figure 5.22), otherwise, the user is asked to set an
API token first (figure 5.21).

31

Figure 5.21: Import course from canvas when no API token has been set yet.

Figure 5.22: Import course from canvas.

On the import canvas page, on the left, a list of available courses is displayed.
On selection of one, on the right all available assignments on canvas are dis-
played, that can be imported as tests. An extra option is to add a custom test
if the user wishes to import a test that is not in canvas.

32

Per test, the user can select which students to enroll in the test. There is
an option to enroll all users of the Canvas course or enroll specific user sets
only. For instance, if you have a student set of resit students, you could only
enroll them in a resit exam.

5.5 Security

Authentication
Authentication in Sekhmet is done by utilizing the Single Sign-On of the Uni-
versity of Twente. Using this service, students and employees can log in using
their University of Twente credentials. The Single Sign-On is implemented us-
ing OpenID Connect (OIDC), which is a layer on top of OAuth2. OpenID
Connect ”allows Clients to verify the identity of the End-User based on the
authentication performed by an Authorization Server, as well as to obtain basic
profile information about the End-User” (from “OpenID Connect”, n.d.). In
our application, the End-User is the student or employee, our application is the
Client and the University of Twente provides the Authorization Server, the place
where credentials and user information are stored. After the user has clicked
the ”Login with UT credentials” button, they get redirected to the login form
managed by the University of Twente. They provide their credentials there, so
outside our application. Once the University of Twente has verified the filled
in credentials, a user is redirected back to our application, along with a unique
token. Our system can use this token to verify if the sign-in has succeeded and
to retrieve some basic user information; user ID (student or employee ID), name
and email address. Sekhmet now knows who logged in and is able to create a
session for this user. For this implementation, we’ve used the build-in function-
ality of Spring Security. Because Spring Security is used and tested by many
others, we can assume most bugs have already been found and resolved, and
therefore is the best way to ensure a secure application to the users.

Authorization
The server checks with every request who the user is and what they can do. This
is done according to their respective roles (see section 5.5). This information
can be found in the database, so for every request, the database is accessed
once, twice or thrice, depending on the complexity of the role. The hierarchy is
as follows: system admin - module coordinator - employee - teacher - student.
A system admin can do anything, module coordinator can do anything within
their module, employees can do anything within a test they are assigned to
and non-employees (Teaching assistants) can do basic operations within a test:
starting the test, stopping the test, answering questions. A student can only
ask questions and read the announcements. A visual representation is shown in
figure 5.23.

33

Figure 5.23: Hierarchy of roles

Roles
The different roles are as described in chapter 2. Whether the user is a teacher

or student in a course depends on the enrollment, and whether or not they are a
system admin or employee depends on the information in the users table, which
is inserted upon sign in using the SSO information of the University of Twente.
The reason we decided not to use Spring’s built-in role system is that the roles
are somewhat dynamic. This would mean that roles should be updated, and
then the built-in system loses its advantage because then persistence needs to be
verified. In contrast, using the database is still fast enough, completely dynamic
and has persistence built into it.

Encryption
All traffic with our application is TLS-encrypted. In the current production
environment, this is done by the Nginx reverse-proxy server15 that runs in front
of our application referring any and all HTTP requests to their HTTPS coun-
terparts, denying the connection if this is not possible. If not running on an
already secure environment, our project has the functionality to do this referring
itself as well.

SQL injection
As mentioned, our application uses the Hibernate ORM and JPA framework.
This reduces the use of direct database queries inside of our application. JPA
converts the tables of the database into abstract objects, this way data of the
database is accessed as if they are a Java object. Meanwhile, the retrieval
of these Java objects is provided by Hibernate with minimal use of database

15Nginx is not part of our project, just part of the production environment. For more on
Nginx: https://nginx.org/en/

34

queries. In addition, although our application limits the use of database queries,
no user inputs (in form of String especially) are applied to the process of manip-
ulating the database. Thus, SQL injections in our application (such as through
the messaging system) is not possible.

Session cookies
To remember the currently signed-in user, session cookies are used. These cook-
ies store a random string of characters, which in the backend can be mapped to
a signed-in user. Because the user information is not contained in the cookie,
there’s no vulnerability to this. These cookies are sent along with every request
for the domain Sekhmet is running on. This however does raise a possibility to
do cross-site scripting attacks. More about how these attacks are blocked in our
system is in the paragraph ”Cross-site scripting (XSS)” below.

Cross-site scripting (XSS)
To protect the application against cross-site scripting attacks, the build-in CSRF
protection of the Spring Framework has been used. The whole project, except
for the endpoint for posting errors (see more in section 5.6), is secured by this
CSRF protection. This means that for all POST, PUT and DELETE endpoints
it is required to send along a valid CSRF token. This token, generated by the
backend, is injected into the HTML of the frontend when it is served from the
server. Only when this token is valid, the request is executed.

Spoofing In any chat application a serious security concern is users spoofing
messages, fooling security by claiming to be someone else when sending a mes-
sage. In our system this is not possible, since for routing and saving message
purposes the sender is extracted from the http session, not the data within the
message objects. This does leave the technical ability open to send a message
to someone you’re already allowed to talk to, in a chat you’re already allowed
to write in, but under a name you don’t own.

5.6 Error handling

Front-end

The front-end has a general error handling that can display error messages to
the user, and log error messages to the server. The former is used to let the
user know something went wrong (figure 5.24), the latter writes the error and
additional information to a log file to help maintainers of the system fix the
errors.

35

Figure 5.24: Error pop-up for a failed test load

On every HTTP request, the response is checked to be valid. If the response
is not valid, for instance, because it doesn’t contain the needed objects or the
response code indicates an error response, an error is thrown.

Checking for errors is also done when WebSocket messages are received. For
instance, if a chat message is received that has missing fields, or indicates that
it belongs to a chat you’re not part of, that is an erroneous situation.

At last, the error pop-ups are also used for the nack system, as explained in
section 5.6.

Back-end

At every request, there could be an error. The server gives an appropriate re-
sponse for each type of error in the form of an HTTP response with useful code
and body. For most responses, the front-end can handle it without having the
need to show it to the customer, but there are a few that have to be shown.

One of the possibilities is that the client is not authorized to access or up-
date some information. This is checked before anything else and returns a 403
ERROR if the user does not have the correct authentication levels.
It is possible that a user gives an invalid JSON object as the body in a PUT or
POST request.
When interacting with a test it is easy to do something invalid, like opening an
opened test, closing a non-opened test, etc. These requests all throw conflict
error, which is fed back to the user by means of an information popup.
Lastly, the most difficult to handle, the 500 ERROR. This one is thrown at
every exception that is not thrown by an expected source. These cannot be
handled by the front-end, because it is an unknown error. These are quite rare,
luckily.

36

These errors are all not supposed to happen when the UI is used, so they are
not specifically handled in the front-end: the user just gets to see an overlay
with the error message. However, this response will only occur when the user
ignores the UI and tries to access the endpoints themselves, so we don’t see it
as problematic that these errors are handled in a rudimentary way.

Nack

Apart from the endpoints, the server also works to connect clients using Web-
Sockets. Where the endpoints return error responses, the client does not re-
ally await a response from the WebSocket. If a message is not stored in the
database due to an error, the server sends the affected client a nack (non-
acknowledgement) saying that the persistence did not work. Similarly, when
the intended receiver does not receive the message, it also sends a nack warning
to the front end. If the sender is a teacher and receiver is a student, it sends
the nack if the student does not receive it (is offline), and if the sender is a
student (then the receiver is by design a teacher) then the student gets a nack
if no teachers received that message. Both these types of nack are handled in
the same way in the front-end: the message in question is coloured red and
an exclamation mark is added (figure 5.25), and the user gets a popup saying
the receiver did not get the message (with either the student’s name or with
”teachers”). This allows the user to take appropriate action.

Figure 5.25: Indication that a problem occurred with a chat message

37

Chapter 6

Ethical considerations and
security

In our project, there are two main ethical considerations: security: making sure
our application does not put users in danger of their computers or accounts
being compromised; and the balance between privacy and authorization: in
order to verify that users claiming to be teachers are teachers and students are
students.

6.1 Security

Cross-site scripting A fundamental part of our project is displaying text
entered by other users. This technically leaves the possibility open for cross-site
scripting. A cross-site scripting attack is virtually unbounded in its potential
damage, as the victim’s entire system could be compromised. Making protecting
users from potential cross-site-scripting attacks an ethical must.

Database security In the current implementation of our system, courses,
enrollments, and in general, all Canvas info is retrieved by a teacher’s Canvas
API token. Meaning we have the same permissions as that teacher has, including
write access to grades and student submissions. These permissions would be
seamlessly transferred to any other person where they acquire that API token.
As a result, there is an ethical requirement to avoid database breaches in order
to protect the validity of educational administration.

6.2 Authorization

A core requirement of our application is to disallow communications between
students, but do allow communication between supervisors and students. To
this end, supervisors and students have to be kept strictly separate. A potential

38

alternate design to achieve this might be by setting up a separate supervisor-
and student-rooms with different join-codes. This would rely on supervisors
to communicate their access code between each other without leaking it to the
outside or any student. We, however, decided that the ethical implications
of acquiring student’s names, enrollments, and student numbers without their
knowledge was worth the increased rigidity of the authorization, by hooking
into the University of Twente Single Sign-On system.

Data ownership The first method of approaching this issue is through the
lens of data ownership. Where a student’s name, enrollment and student number
are all data owned by the student (the point of view taken by the GDPR Council,
2016), and we are effectively forcing teachers to give us their students’ data in
order to use our application. This would be a massive ethical problem if our
application was some publicly available program any person may sign up for
giving us their, and their students’ data. Except that our project is not publicly
available, and entirely useless by design outside of the scope of our university.
That leads us to the second method of approach.

Onymous context The second method of approaching this issue is in ques-
tioning whether the context calls for anonymity. Marx, 1999 described a number
of rationales that might be applicable in favor of, and against anonymity in a
given context. Partially because the context of test-taking already features iden-
tifiability as a crucial aspect, far more of the rationales for identifiability apply
in our context than against it. Not to mention the fact that most other similar
online tools used by the university feature similar breaches of privacy.

39

Chapter 7

Testing

There were four kinds of tests planned for the system: internal (automated)
system tests, usability (HCI) tests, rigidity tests and exploratory (comparing)
tests.

7.1 Internal system tests

Setup
The automated (internal) tests try out two things: correctness of behavior and
correctness of security. Correctness of behavior is whether or not you can open
an already opened test, or when an incorrect JSON in a request is handled
correctly. It tries to access endpoints with all kinds of different correct and
incorrect input and checks the error handling, the responses, and the state of
the database.

Security tests also test for correctness of behavior, but specifically whether or
not people get access to everything and only what they should have access to.
This is done by requesting the method to which an API link is bound, and then
seeing what happens when dummy users with preset roles try to access them.
By accessing every endpoint with all possible roles, it shows that the system is
secure, assuming that the roles are sent correctly to the endpoint (it only han-
dles authorization of authenticated users, for authentication, there is the Single
Sign-On supplied by the University of Twente).

The major advantage of setting up these tests early is that it becomes quickly
apparent if a bug fix or update changed the behavior of the system.

Results
Due to the complexity of the simplifications Spring and Hibernate make, it was
quite difficult to automate the testing. Firstly, Spring uses an @Autowired sys-
tem to automatically instantiate a connection to the database. Unfortunately,

40

this proved to only work for selecting data, not updating or deleting. Because
it is Spring, instead of giving an error, it just would not send a delete or update
statement. So calling an API endpoint would work, because it was not a test,
and using Hibernate within a test would not work. It took quite some time to
figure that out.

Unfortunately, getting the tests working took the first 4 weeks (it was low prior-
ity, so the back-end got top priority). This did mean that the tests were applied
later than we hoped, but after those weeks we did check the back-end after most
updates. And it did find quite some behavior issues.

To be fair, a few edge cases still slipped through the net and were found dur-
ing other tests, which were mostly due to unexpected database content. For
instance: when an expected field, like assigned teachers to test, was empty, the
JSON formatting did not go correctly. This did indicate that a server-side mea-
sure was required: the only correct JSON was to leave the server. The reason
these cases were not caught by automated tests is that the database needs to
have a specific setup in order for it to crash.

7.2 Usability tests

Setup
One of the requirements clearly states the user experience must be intuitive. To
determine what potential users think of certain features and the UI/UX of the
product, usability tests are conducted.

In these remotely conducted usability tests, a few potential users will be
asked to use the application. Certain tasks will be given, which are representa-
tive of the use case of the type of user. The users are asked to share their screen
with the team, in order to keep track of how the goals are achieved. In the case
of students, as a preparation, these users will have already been added to an
active test in the system, in the case the users are students. The task given to
the student is rather imprecise. This way, a real scenario when a student has a
question during an exam, where there’s in principle no possibility to ask anyone
how the system works. In the case of a teacher or coordinator, these people are
asked to import a course and test, with teachers, TAs and students, and make
it fully ready as an exam actually starts at a specific time. This way, the full
procedure teachers or coordinators have to follow to set up the system properly
is simulated.

Although students may not be the most important users, because they use
a rather limited part of the system, most of the users are however students.
Besides, students use the system during their exams, which is not a desirable
moment to search in an interface for the right place to ask a question. This is
why usability tests will be focused mainly on the student’s interface. As the
number of different and specific elements in the interface is rather limited, espe-
cially for students, not many different users are needed to find most issues in the

41

system. According to Virzi, 1992, “80% of the usability problems are detected
with four or five subjects”, thus these test is conducted on five people, namely
a few students during a peer feedback session, as well as the two supervisors.

Results
All the usability tests were, in the end, run on 5 students (not including devel-
opers), 1 teaching assistant, 2 teachers (the supervisors), the developers them-
selves, and some friends and family that wanted to see the system. While we
did want to test on groups of hundreds, we feel that the tests we ran already
gave us some good improvements. The main improvements are listed below.

– Problem: the menu was a bit unclear because users that tried to get the
overview of tests got redirected to the current page because they only had
one test active.
Solution: we hid the sidebar if a user had no need of the overview (be-
cause they only had 1 test)

– Problem: the menu options were somewhat unclear: they did not know
if options were specific for the current test or global, like the settings and
people page.
Solution: we moved the global pages to the top bar and the test specific
pages to the sidebar, and that sidebar would only appear if there was a
need for it

– Problem: it was unclear that the system was working, like when opening
a test or importing a lot of information. This easily takes 20 seconds, and
the user had no feedback that it was working.
Solution: now when those buttons are clicked, they are visibly disabled,
then there is some feedback using a simple loading wheel animation and
a message that it can take a while.

– Problem: a remark on the list of chats in the teacher view. If there were
100 students in the test, it would show 100 conversations.
Solution: We hide empty conversations, clearing up the view tremen-
dously

– Problem: the student does not know who answered their question. How-
ever, the endpoint still sent that information, the front-end just did not
display it. If they went into the browser console, however, this information
was readily available.
Solution: we don’t consider this a security issue, and not even a privacy
issue, since with the old system you would immediately know who an-
swered your question anyway. Either way, it was not what we wanted, so
that was fixed.

– Problem: the buttons that could not be used by a specific user would not
even be visible. This was sound advice, and we had already implemented

42

this in part, but apparently, we overlooked a couple of buttons.

– Problem: there was no way of knowing whether or not a message was
received.
Solution: we implemented a nack system to be certain that a message
was received by a (or the) receiver. More on the nack in chapter 5.6.

The tests did show some positive points. The login screen and redirect were quite
clear. Also, the interaction with the chat system worked very well. People easily
understood how to use chatting, where to send responses, which chats are unread
and how to edit or delete a message. The announcement also worked quite well,
although someone did make a point that only the last announcement was shown
on the main page, we decided it would clutter the screen too much if we included
multiple announcements, especially because the previous announcements are
also still available. Teachers also considered it good that they could easily see
that a student was being helped and who was helping them. They also found
the way of making announcements sufficient.

7.3 Rigidity tests

Setup
The setup of the rigidity (or full system) tests were such that a lot of users
just use our system and we collect data on that (bugs, delays, etc). This shows
whether or not the prototype we let them test is actually a (minimal) viable
product. We had set up this test during some regular exams of Technical Com-
puter Science. The first test would have had 50 participants, the second one
would involve 400 participants. We also got the opportunity for a third exam
to test our system on.

For both these tests it suffices to let the participants use the system in a real
scenario. This will give rise to any potential problems in the system. All errors
occurring are logged, both the front-end and back-end errors, so we don’t need
interaction with the students during the test. This way the testing is the least
disturbing, and participants can focus on their exam.

Results
Unfortunately, we could not complete the rigidity tests, due to the system being
too unstable at the time of the exams. However, we did ask some students to
test the system when it was stable, and they did address some issues with the
behavior. So although it was fewer users than we had hoped, it still surfaced
some bugs that could be fixed.

These tests also introduced a new problem in the program: database access.
For database queries, we used the JPA package. Unfortunately, the way we set

43

up the ORM was quite badly optimized. So it introduced us to the N+1 prob-
lem: having to create a query for every single object that is retrieved to retrieve
its children. This was not as apparent earlier, because testing was done with
only ten or twenty people in the database, so it was still super fast. However,
when there were 500 people in the database, it slowed down enormously. This
was solved by replacing the automated queries that we used thus far with cus-
tom queries that would still only retrieve the necessary information but would
do so in one single request.

7.4 Exploratory tests

Setup
At the start of the project, we wondered whether a peer-to-peer network system
would be viable or even desirable for communications. This would really depend
on the number of simultaneous exams and amount of people per exam. If there
are a lot of simultaneous exams, it might relieve the stress off the server if the
messaging was handled locally, and the delays would probably decrease. If there
were tests with lots of users, this would most likely become infeasible.

We set up a test that would stress the system hard, using 50 Chromebooks
that constantly send messages to an off-site server. Then we would measure
the delays if people were using peer-to-peer networking, or normal client-server-
client messaging. The Chromebooks were set up in a potential exam room at
the University of Twente.

Results
Unfortunately, due to the routing system within that room at the University of
Twente, we could not use our server as a surrogate Domain Name System, so
we could not set up peer-to-peer communications. However, because the test
with standard client-server-client communications went so well with such small
delays (20 ms - 1000 ms under enormous strain) that we decided client-server-
client communication would suffice. Since the server was able to handle those
approximately 300 messages per second, the real usage would be way friendlier.
Even with 10.000 questions in a single test, this would still only come down to
3 per second (if the test takes an hour).

7.5 Discussion

The automated tests give a good indication of how well the certain parts of the
system behave. The system seems secure as long as the authentication is secure,
as we tested all endpoints with all possible roles and it returned exactly what
was expected.

It would have been nice to have more input from different potential users. If we

44

could have had our prototype stable for one of the exams, it could have given
input from a hundred or more students. This would most likely have had an
impact on our UI design, and might even have surfaced hidden bugs. Neverthe-
less, we do feel that it was a good choice to deploy a version during an actual
exam only if we were 100% certain it was stable enough to not hinder students
during a real exam.

The choice of networking system, peer-to-peer or client-server-client, has not
given any problems. The tests showed that the server was put under quite a
bit of strain due to unoptimized queries, which would affect client-server-client
harder, but after that was fixed, we had no problems whatsoever with people
getting notable delays when chatting.

There were also no problems found with any code insertion attacks like SQL
injection or XSS, thanks to the character escaping and the prepared statements
in the back-end.

45

Chapter 8

Reflection

8.1 Group reflection

At the start of this project, we failed to oversee the required complexity of
the intended product a bit. That is why some design choices proved somewhat
overengineered, whereas the complexity of other fields was a bit underestimated.
What follows is a reflection of the most influential design choices, our hindsight
opinion on them, and how they could have been prevented or improved where
applicable. It also includes a reflection on the process and organization.

8.1.1 Technologies

There are a number of technologies we decided to use, or specifically not use in
our project. In the following section, we will discuss the impact this had on our
project as a whole.

Spring
Spring has quite some features built into it. If It was clear to us how to use
those features, this process would have gone nice and smoothly. Unfortunately
this was not the case.

Firstly, the Spring Security, which should have made authentication easier, did
not explain well what it did. So to create your own specific use case is quite
a nightmare. Due to the lack of documentation and the sparse occurrences of
good examples online, this took a lot of energy.

Secondly the integration with Hibernate through JPA. The problem here was
that we just wanted a database with UTF8 encoding, but there are so many
possible solutions online of which most don’t work for our exact setup, it takes
a lot of effort to separate correct from incorrect. This was especially the case
when the solution did work locally but did not work on the

46

Similar to the debacle with STOMP & SockJS discussed later, an example of
the clash between our project group and spring happened when first serving web
pages. In the ”default” spring-boot environment adding @getMapping("/some/path")

in front of a function returning a string, spring will at the given mapping serve
the html page found in resourcestemplates with the filename corresponding to
the returned string, file extension not included. This is very convenient, but
also deeply magical. When first looking into serving pages we wasted a full day
going through tutorials and code-bases in the hopes of finding exactly what sec-
tion of the program was responsible for making this link (ultimately discovering
it was Thymeleaf, when we removed it. We did not actually use the templating
feature).

The advantage of of the framework is that it makes it very easy to start up
the server itself. There is no issue with threading, endpoints, TomCat config-
uration and run-on-startup classes. Unfortunately, this element is somewhat
veiled by the lack of documentation. So debugging this is really not an option.
The @AutoWired and @Component annotations worked most of the time, but
whenever they did not, it was a try-all-and-error trajectory up until the point
it worked.

Hibernate
Hibernate as ORM was not a bad choice. However, there were some quirks that
Hibernate had that really delayed our progress. We will mention a few here.

Hibernate unit tests will allow you to create and update the database, but
won’t allow you to delete for some reason. Not knowing this for a (too) long
time made the testing of deletion a complete nightmare due to inconsistencies
in the automated test and a manual test.

Hibernate needs to handle all its relationships, and it is very easy to over-
look some. This is not a problem per se, but it does make it quite difficult for
a beginner to grasp all correct concepts and make the right cascading, derefer-
encing, and updating choices. This also took some time to get right, because
wrong relationships are not checked upon compilation. So to find these errors,
we had to gain more knowledge, then comb through all entities and update them
accordingly. This was eventually completed.

Hibernate also has some trouble with loading nested objects from the database
in a compact manner, which we will go into in paragraph 8.1.2:Database design.

Whether or not Hibernate ultimately saved us time or cost us, is hard to say.
It should be mentioned however that in one of the final weeks we were seriously
discussing ripping out hibernate entirely, and re-writing all database interaction
by hand in raw SQL. After going to bed angry and confused, the next day a

47

new Hibernate feature was discovered however and the problem in question was
solved.

Vue.js
The reason we wanted a front-end framework was to speed up development and
make it easier to create a great user experience. Despite the fact that learning
a new framework also requires an investment in time, we do think that using
Vue was a great choice and that it did everything we expected from it. There
was enough documentation and the community support was great as well.

Peer to peer
Peer-to-peer communication (p2p) was a mistake. Not a mistake in hindsight
either, we should have built the some one the bench-marking by the end of
week one. Early on some people suggested that p2p might not be necessary,
just a flashy feature that we were hyped about. And while it was true that the
fears of p2p’s effects on security and authorization were unfounded, the unex-
pected presence of a NAT increased the expected set-up cost of p2p significantly.
Enough to make us reconsider whether it would be worth it. All-and-all we lost
the better half of a work week in man-hours on p2p, 3 days to set it up + 1.5
days for the improved prototypes and benchmark code.

WebSockets: not using STOMP& SockJS
When using WebSockets within the spring framework it is often all but as-
sumed you also use the STOMP1 protocol and SockJS2 WebSockets. After
some research, the conclusion was reached that neither of these technologies
would pose any advantages over self-defined protocol/plain-text via standard
browser WebSockets. Avoiding these two technologies has a significant impact
on maintenance, as such are listed here. The lack of documentation of spring
in favor of STOMP+SockJS-tutorials ultimately meant the decision to not use
these technologies cost about two working days in man-hours, as it became very
difficult to find people with similar problems using a similar solution. In the
end, it is hard to gauge whether avoiding STOMP and SockJS was worth it.
On the one hand, we did end up implementing NACKs (non-acknowledgment
messages) ourselves and discuss here that ACKs might have come in helpful,
both of which are part of STOMP. On the other hand, the maxims of KISS
(Keep It Simple, Stupid), or Occam’s razor as applied to software development
would suggest that choosing to avoid these technologies was correct.

8.1.2 Design

There are a number of aspects of our design that posed a hindrance or would
have helped. We will discuss these in the following section.

1https://stomp.github.io/
2https://github.com/sockjs

48

Database design
We created the basic database structure quite early on in the project. This

design was fine, but a little more complex than necessary due to the unknowns
still in the design, like whether or not we would use p2p. But when we chose
particular designs, the database was extended accordingly, but never reworked.
This increased the complexity somewhat, but it still felt handleable. However,
what we probably should have done is recreate the entire database structure
to match the design better. We updated primary keys to be compound, we
let the front-end create keys, etc. This was in hindsight probably unneces-
sary and made both the front-end and the server needlessly complex. However,
that change would increase the database size and therefore the carbon footprint.

We could also have used an automatically generated person ID to increase pri-
vacy: The ID that we store of people is the same as their Canvas id and makes
them recognizable. It would have increased privacy somewhat if we had only
sent (randomly) generated ids to the front-end. However, since that information
is only available for people that are logged in, and those people could access that
information in Canvas anyway, it was not a major concern of ours.

Back-end structure
The back-end had a few minor design alterations, but no big reworks, even
though that was probably necessary.

Due to our unfamiliarity with Hibernate, we could not let the Gson library
(which transforms objects into their textual JSON representation) transform
our entities, because the library did not know where to stop with nested ob-
jects. We then made the mistake to create a way more complex entity-to-string
system that used string concatenation. This made the back-end contain some
bugs, so it delayed our progress somewhat. In the end, we decided to still use the
Gson library, but use its Json builder to create objects instead of letting Gson
try to automatically transform an entity to Json or using string concatenation.
This improved the reliability tremendously. It was a step that we should have
taken way earlier.

Another wrong design choice was to let the front-end generate message IDs,
as mentioned in paragraph Database design. This was still set up when we did
not know if all communication would go through the server, but when it turned
out it would, we should have let the database create the ID’s, which would al-
low us to send acknowledgments to the front-end, which would have improved
database complexity, server complexity, and error handling.

A very unexpected problem that surfaced late in the project was with database
interaction and transactions. Hibernate suffered from the N +1 problem, where
for a group of objects, the database would be queried for the children of each
object separately, and in that object had children, that would be queried sepa-

49

rately, etc. This would create an exceptionally large amount of singular database
queries, which slowed down our server enormously. This only started to occur
when we imported real tests from canvas, with 500 users. Because we had
used about 10 users in our database up until then, the N + 1 problem was less
apparent. To solve this, we defined a lot of queries ourselves instead of letting
Hibernate define them automatically, and used SQL Joins to reduce the number
of queries from 1+500+500∗2 to just 1 more complex query. (1+500+500∗2
is an example of database grabbing 1 test with 500 enrollments in 1 query, then
500 queries to get the users that are part of that enrollment, then 500∗2 queries
to get the conversations and the messages within there). Unfortunately Insert
statements could not be done in a single command, but that was handled by
creating batches and using batch inserts. This still created the same amount of
queries, but only 1/50th of the server requests (for batch size 50).

Something that was mentioned in the meetings was loading (large parts of)
the database into cache. It would have sped up the server, but we did not dare
to allocate our limited resources to this task due to the deadline coming very
close. It would solve the delays when inserting, and retrieving would lose the
connection delay.

Error handling
More towards the end of the project, we decided to beef up the error han-
dling. Up until now, the only errors that were handled were with API calls,
and not with the WebSocket communication. If we had thought of this issue
earlier, we would probably have been able to rework the database, back-end,
and front-end to create an ACK system (acknowledgment for every message
stored/forwarded/handled), so that the client would always know the status of
their messages. However, due to the time constraints we settled for a NACK
system (notify user only when something throws an error or is not received by
target). This is still a massive improvement on the fire-and-forget we had up
until then, and improved usability enormously. It is not as robust as ACK sys-
tems, but it’s a close second. It can’t fix the errors, but the client will know
there was a problem.

We should probably have designed the error handling schema earlier in the
project so that we could refine the possible fixes the front-end or back-end
could apply.

8.1.3 Teamwork & Organisation

In the following section, we will discuss a number of factors in the teamwork
and our organization of the project.

Task division
In the early stages of the project, most of the task was divided based on the ar-
chitecture of the system which are the back-end, front-end, and database. This

50

seemed to not cause any problem at first, however as the project goes on we
found out that some of the features for the web application are dependant across
the architecture types. As an example, in our system, the front-end requires
the back-end to serve data in the form of JSON, however since different people
worked on the front-end and the back-end at times the JSON form expected by
the front-end was not what the back-end actually serve. Furthermore, changes
made on one part of the system (e.g. front-end) require more than one person
to work on it while keeping each other informed on the changes on their part.
Implementing this practice for the whole duration of the project without any
mistakes turns out to be difficult and many errors in the system are a result
of this. Together with the observation that the more feature-oriented code re-
quired much less review, leads us into thinking that perhaps it would have been
wise to divide the task differently based on the features. Although we could not
really say firmly that this is better, as many features are intertwined, especially
in areas such as the database.

Planning
The planning phase was one of the successful parts of the project. During the
planning, we were able to extensively think and discuss what would be best for
the web application, such as the functionalities of the web application, how we
would implement them, and also when we should have a functionality ready.
We were planning on the things that will lead to successfully create of our web
application and we can say that this went well as we ultimately have a working
web application. However, an aspect that we seemed to have overlooked was
planning on preventing the things that will disrupt our planning. Along the
process of the project, we faced issues like the difference in protocols (such as
the endpoints list) for features that need the functionality of both the back-end
and the front-end, and this does disrupt our progress. Though we eventually
did specify the protocol, it could have been done earlier in the planning stage.

Documentation
Because we had open and nearly constant communication within our group, one
trap we fell into was a failure to document many smaller, granular decisions that
are crucial for functional interaction between practically disconnected pieces of
software. As a result of this, when testing started we found that a large amount
of the protocols for back-end-front-end communication were mismatched, caus-
ing a large number of avoidable issues. On a similar note, the failure to keep to
what documentation we did have, in the design mock-ups we made before we
started development. Since a number of new feature suggestions we got in early
demonstrations were already accounted for in those mock-ups.

Testing Testing was an aspect that we also kind of overlooked as well. We
did plan a test procedure mainly for the last part of the project, but we did not
plan to test for in-between changes and new feature implementations. If testing

51

were done as early as possible in the development phase, we could perhaps fix
bugs and faulty parts of the system as they show up along the way instead of
waiting for them to pile up and fixing them at the end.

A related issue our supervisors are very familiar with is our repeated self-
inflected demo-effect. Where we would find some minor issue during a practice
round for an upcoming demonstration, would fix it quickly before the demon-
stration started, and then end up in the demonstration itself with our pants
down and a program that didn’t work. A possible solution to this would have
been a staging server, we however were not in a situation where we constantly
needed to have a running version ready. What we needed was the self-control
to not show off the absolute shiniest, best, latest version.

While we did not have a formal staging server, we did have local testing with
a separate selection of databases. Here we ran into the issue that our testing
and production databases were not exact copies. Most notably is that our test
databases did not check constraints, likely due to a difference in the database
engine we overlooked during setup. As well as the selection of users in the test
database being far smaller, leading us to only notice a major performance issue
once we tried for our first full-system-tests.

Speaking of full-system-tests, we did not do any, but not for lack of trying.
We had a number of tests scheduled, but for each and everyone we did not
manage to have a satisfactorily stable program ready in time, once even going
so far as to do initial testing of a new version inside of the room where the
test was to be held, shuffling our way out as the students started shuffling in.
Theoretically, we should have had an old, stable prototype kicking around as a
proof-of-concept for exactly these situations, though this would have required
a development philosophy of building out from an older prototype, rather than
building large individual pieces and connecting them. Notable though, our last
test for which we had a version that was merely buggy, but theoretically usable
the test fell through due to a major bug in another experimental piece of software
making the teacher unwilling to expose their students to more tests at that time.

Lastly, still somewhat related to the concept of testing is that in this project
we learned the value of code reviewing. There are often simpler, far more main-
tainable solutions to problems that you are not seeing. And a code review helps
both to manage the degree to which a piece of code is ”your handwriting”, as
well as to keep at least one other person informed in detail of what you are
doing.

Team communication
The team communication worked very well regarding organization. The 2-daily
meetings made sure we were all on the same page regarding the planning, and
it ensured we all knew what was being worked on, by who and how long it

52

would take (approximately). The only thing that could have been improved
was the communication on the structure of stuff. Because we split up the work
on front-end and back-end between different people, we should have had more
collaboration on formatting and required information, and especially writing
these things down. In written documentation it is way easier to spot differences
than in verbal communication. In the end, this communication went better, but
especially in the beginning it went a bit sluggishly. We do feel that communica-
tion in the team, and also with the supervisors, went in an open, friendly and
safe way.

Communications with LISA
Communication with the LISA department of the University of Twente was
required to set up the Canvas integration and the Single Sign-On. At first,
we had good communication with LISA about integrating Canvas. We got
all the information within a short period of time and could start working on
the implementation. We were able to ask questions quite concrete which led
to an efficient communication. However, later on, it turned out that we missed
something in our communication with them. We started on the test environment
of Canvas to test and implement our solution. When we wanted to upgrade to
the production environment of Canvas, it turned out that we had to fulfil some
requirement which we couldn’t meet, and therefore we had to implement an
alternative approach (more about this in section 5.2). These were: it needs to be
hosted on a LISA maintained server and there had to be an specific maintainer
who is responsible for maintaining, bug fixing and enhancing the application.
We did not expect this (partly because the upgrade to production environment
of the Single Sign On did not require anything special), but also because we did
not communicate about this. If we would have known earlier (so if we asked
about it), we probably could have managed something so that this could be
used. Communication with LISA about Single Sign On was somewhat rough
and time-consuming, but in the end not that bad. By preparing everything we
could before we had the actual information (like registration IDs and secrets),
it didn’t led to big delays in the development of this part of the system.

Iteration of design
With the design iterations, we overlooked some options by being too focused on
a specific choice. For example, when we discontinued the p2p system, we should
have taken a step back and seen how that choice could make our entire design
different. Instead, we focused on whether or a change was needed in order for
the system to work, and the answer there was no.

Another example of being too focused on a specific problem or choice is with
online users. In the current system, only the back-end knows who is online, and
the front-end just knows who could be online. If we made that more dynamic,
we could have changed the structure of the back-end on error handling, we could
have reduced the amount of data that had to be appended for a lot of requests,

53

just because the front-end already knows the address book. If we had zoomed
out and reconsidered the entire synchronization and state between back-end and
front-end, we could have made the interaction simpler.

The problem with not zooming out and reconsidering design choices is that
it’s a downward spiral: fixing one design issue creates the need for another de-
sign choice, and it becomes more and more complex. The only thing needed to
break through that cycle is a reconsideration of the entire design, but unfortu-
nately, none of us realized this issue until we were done with the system and
had run out of time.

The positive
There were a number of things that went right in this project, however, mostly
relating to the dynamic of the project group. During one of our very first
meetings, we discussed what we wanted from the project. And even though this
group was assembled from the ”If you’re having trouble finding a group, mail
me”-list, we unanimously agreed that our aim for this project was ”to build
something we’re proud of, and then we’ll see where the grade ends up”. This
sense of ”being on the same page” managed to persist for almost the entirety
of the project. Besides just generally being able to have fun with each other,
when it became clear our project was struggling we all agreed to work 14+ hour
days and through weekends, as well as to the day of rest after that deadline had
passed. Everyone was open to questions and suggestions, and the discussion
was lively, but never heated. We helped each other, learned things from each
other, and when motivation started dropping, propped each other up to salvage
from this project what we could.

8.2 Individual reflections

8.2.1 Ben

When we first moved from open design discussions to proper development, I took
the task of setting up the real-time communication. I initially started work on
peer-to-peer communication, research mainly as I was entirely unfamiliar with
webrtc and had kept my exposure to Javascript to a minimum. After a few
days, I realised webrtc was dependant on WebSockets, so my focus shifted, and
for WebSockets we needed to serve web-pages so with the help of Dion we set
that system up as well; this was by the end of week 2 of development. After
moving these features from proof-of-concepts to usable prototypes I set up the
production environment, so that everything would be ready for the exploratory
test in week 4. After that catastrophe, I gave myself until the next Wednes-
day morning meeting to get p2p to work. On Monday I did some benchmark
tests for the WebSockets, and came to the conclusion that p2p was overkill.
Instead, I began working on permission checks at each endpoint, and having the
WebSocket intercept and handle important messages rather than just blindly

54

forwarding them. After that was done, I would try to help in debugging, as I
was the only one with access to the production environment and database. As
increasingly the only unfinished parts of the project were found in the front-end,
the next task I really ”took on” was the reflection report.

P2p To mutate a phrase: I was so preoccupied with the fact that I could, I
didn’t stop to think if I had to. As discussed in the group reflection, p2p was
a mistake. Peer-to-peer just appealed to me, and honestly, to this day I believe
that Sekhmet with p2p as designed would be a better piece of software than
Sekhmet without. It would be cliche to claim that our project was done-in by
ambition, so let’s call it a more base desire for an unusual eye-catching technical
feature instead.

Tunnel-vision Especially early on in a project, it is quite easy to develop
a kind of tunnel-vision. My networking code initially was build to be entirely
generic, imported as a library in other parts of the project. As a result, it did not
matter to me what was happening in the rest of the project. I stopped paying
attention to design discussions in our meetings, giving updates and answering
questions when called but contributing very little. When I re-surfaced with my
module and instructions on how to use it, the rest of the project was still foreign
to me, even though it was already about a third done. This effect is somewhat
unavoidable, but I do regret mentally checking out of the meetings. I was one
of the bigger advocates for keeping up-to-date semi-standardized descriptions
of the interfaces between parts of the project, -especially ones that fail on run-
time, such as REST endpoints and intercepted web-socket messages- and early
in the bug-fixing phase a lot of issues were caused these interactions being mis-
matched.

Agreeing to spring True, this was a group decision, but it is one I also
endorsed. Having forgotten how Java is second only to C++ in how notorious
it is for featuring massive ornate frameworks, I also argued: ”Well spring and
Django do the same thing, we’re not particularly familiar with either, how hard
can it be?”. Alternatively, when it took me two days to find a tutorial on
how to set up web-sockets without sockJs or STOMP (since having looked into
it, I decided we needed neither), I could very much see it coming that the
focus on boilerplate-ridden tutorials over formal documentation was going to
be a problem. Instead I did nothing. The amount of time lost on spring is
immeasurable, since the time investment of ”figuring out how to get spring to
do a thing”:”building that thing” was shockingly close to 10:1.

Silent refusal to touch the front-end To be fair, I did touch the front-
end once. I implemented logging of abnormal web-socket closes to our error
endpoint. Nevertheless, it took having quite literally nothing else to do at that
moment, and after seeing the toothpicks, chewing gum and wet paper towels
that hold up any interactive web-page I did proceed to touch the front-end

55

exclusively for debugging communication. Now while I can’t honestly say I
personally believe my life would be better had I worked on the front-end more,
I do believe we should have had another pair of eyes on the front-end from day
one. And since I was weirdly floating from minor odd-job to minor odd-job for
half a week, I should have spend that time critically dissecting the front-end
instead.

8.2.2 Dion

Spring During the first weeks of deciding to use the Spring framework, I have
no problem with it whatsoever as I am relatively new to Spring as well as to the
previously chosen framework Django. Simply said I have no preference over the
framework. As we go along the project it started to show up how complicated it
is to learn spring (as someone who has never touched it before). Documentation
on classes, Java annotations, etc was difficult to find which then resulted in me
investing time to only figure out how a part of Spring works, leaving me less
time on actually creating the functionality of the back-end.

Task Division At first the task division was divided based on the structure
of the system (front-end, back-end, database, etc) and I was working in the
back-end which I really liked. As the project progress, it turns out that most
of the part of the project are included in the back-end such as implementing
the database and connecting the system to canvas and others which at the
beginning was not assigned to me. Thus, in the end I mainly work on creating
the endpoints of the system. I feel like I could have and should have done more,
especially in the end of the project where countless bug kept appearing in the
front-end. This leads me to think maybe I should have tried to divide my focus
into helping the front end as well somewhere in the middle of the project since
Martijn is the only person fully working on it, in which ultimately, I did not do.

Project Overall, I really like the project. Creating a chat system is interest-
ing and I learned a lot during especially the technicalities we used in our web
application. It was really nice meeting and getting to know Ben, Jurre and
Martijn during the project (I already knew Jan before the project). Working
with everyone was a fun experience.

8.2.3 Jan

I feel like quite a few things could have gone better over the course of this mod-
ule. I will list a few possible improvements for me, though there are more than
I can get into here.

Firstly, the ordering. I think our planning was very good, but we overlooked
something. It would have been better to first determine the endpoints that were
needed, and only then implement them. This would probably have sped up the
process , since then there would not have been double work or reworking the

56

endpoints. That was my mistake, because I just started coding the endpoints
and just getting the data from the database. Most of these endpoints were cor-
rect, but some were later deprecated or added.

Another thing I should have focussed on is testing. I wanted to have the end-
points ready for the front end, but the front end could (and already did) work
with dummy data. So I could have focussed more on creating system tests, and
solving all the problems associated with Hibernate and JPA testing. Then the
front end would have had to run for one more week on dummy data, which
would probably have been possible, and the back-end could be tested with ev-
ery update if the behaviour was still correct. This could probably have saved
time in the long run, but I focussed too much on finishing the endpoints. The
problems with the tests themselves, where Hibernate does not want to delete
values in database would still have stirred, but then they could have been solved
two weeks earlier, and everything would have been a bit smoother.

Another issue I should have solved was about front-end. I could not get Vue
to compile consistently and kept forgetting the build steps, so I just tested all
endpoints only on server side. I should have just built the front end everytime I
wanted to test what I created, because in the end we found out that there is a
JSON format exception in the frontend (for actual invalid JSON) that slipped
through the backend (back-end did not see it as invalid). This, and other bugs
like these, could have been prevented by me if I just used front-end for testing
the implementation.

On the subject of front-end, I do think we should have divided the task better,
because I think the front-end coders had more work than the back-end coders.
If we had divided those tasks, we would have had a high fidelity prototype ear-
lier in the process, which could have helped in development. So next time I
do a project with multiple people, I will make sure to put more resources to
front-end until a high fidelity prototype is obtained. Then we could have built
that out into the final product step by step, and on each step there would be a
working prototype.

On the plus side on the organizational part, I do believe that the two-daily
meetups were really helpful to see what went on and how people were pro-
gressing. This really helped with the oversight. I believed that it could have
been better if we implemented some more Scrum features in those meetings,
specifically having partial deliverables and working in sprints instead of one big
trajectory.

8.2.4 Jurre

As my main task was ’authentication and integration’, I worked mainly on the
integration with Canvas (import courses) and the authentication with the Single
Sign On of the UT. I really liked this task, because for me this was something

57

I was not yet experienced with. The good thing is that I indeed learned how
these techniques (particularly OAuth2) work. Although, while I was working
on this and didn’t fully mastered the Spring Framework, which I worked with
to implement this, I got demotivated to work on it, and also a bit on the project
in general. I think this could have been prevented by better diving into this
specific framework, as it turns out different frameworks don’t have to share a
lot of similarities. This demotivation however didn’t take took long, and once I
understood the framework slightly more, thing came together and worked.

Learning the framework This leads to the second point: invest time in
learning a new framework. Although I’ve always learned new frameworks and
techniques by just making something with it, but I believe it would have been
totally worth it to invest some days in watching YouTube tutorials and reading
blogs to get an introduction of the basics of the framework. I’m still not really
convinced/satisfied by the Spring Framework and if I would redo this, I would
pick another language/framework combination.

Design choices Altough we talked about design choices, I think we all made
our own assumptions on these designs, which turned out not to be the same.
Sometimes in some details, but important details. I think that is one of the
reasons (among others) why different parts of the project didn’t come together
as we expected them to be. We should have worked those designs out, and
’present’ it to each other. If needed, this can be changed, but more important,
we’re all on the same page. That has gone wrong several times in this project.

Making basal design changes In my opinion, we should have made some
substantial changes in our design somewhere halfway the project, of even after
that. We’ve discovered things didn’t work many times. Over and over again,
we just looked at fixing the bugs in the code, but we never went back to the
drawing board to implement another approach. Of course, at first glance this
looks like a larger task to deal with than just fixing that one bug, but in the
end it’s probably not. Finding and fixing bugs over and over again takes lots of
time, which could partly be resolved by redesigning some fundamental parts of
the system, making it easier to write the code and thus is less error-prone. This
again, will lead to a better product.

Feeling about the project To conclude, I’m quite sad about the feeling I
finish this project with. I looked forward to this project as part of my studies
and started really motivated. I was really happy with the choice of project
within the team. As the system was bugging all the time and demos were
failing, that changed drastically. In the end, I’m honestly looking back on the
worst part of my studies (hitherto). I hope I can change that feeling somewhat
in the upcoming weeks, as I will probably get some more rest and time to do
other private projects, but it will definitely not meet the expectations I had
before starting the quartile. The people were great to work with, though.

58

8.2.5 Martijn

Task division For this project, I mainly contributed to the front-end. I really
liked focusing one one part, such that you can really master it and know every-
thing about it. On the other hand, it also brought in some difficulties for me
from time to time. As I didn’t work on the back-end, I also didn’t know where
to solve small mistakes there. Everything I wanted from the back-end, required
a dependency on someone who was working on the back-end. This required
some good communication (as described in the next section), as well as great
planning. In previous projects I was more used to splitting tasks on features,
instead of splitting tasks on architecture. The former means that you can do
the whole process yourself: designing, developing the back-end, developing the
front-end, and do full testing. Now every time I wanted to do a full test on cer-
tain features, I was dependent on the back-end. If something was wrong, we had
to collaboratively go back to the design phase, implement front-end and then
wait for the back-end to be re-implemented (or the other way around, depending
who finished first), then test, and maybe do this multiple times. Especially in
the beginning of the project, some of my shortcomings on communication and
planning came forward due to this approach.

Communication In the beginning of the project, we discussed a lot of design
choices with the whole project group, which was great. Then at the start of
the implementation phase, I slowly found out that for most things we only
discussed the general ideas. For some things we discussed the implementation
in detail, but we did not write down a lot. This caused me to make quite
some assumptions, that were not shared across all project members. Most of
these assumptions were about very small details, but still costs a lot of time to
change. Some examples: we have discussed how chat messages look like at a
JSON structure, the back-end implemented it, and the front-end implemented
it, and when both parties finished we started testing. Things where not working,
because the back-end assumed camelCase for property names, and the front-end
assumed snake case for property names. Or I expected the list of courses from
an endpoint to be an object index by key (because I was working with that idea
for a week already), and the back-end served the list as an array (which makes
a lot of sense if someone asks you just to ’return all courses’). Those things are
not hard to fix, but it still takes quite some time to find out what exactly is the
issue, solve it, and then test again.
If I would have written down the exact structure of data I was expecting from
the back-end, other group members could have used that as a reference, and
even could give their opinion on my thoughts. It would have improved the
quality of some design choices, and would have saved quite a lot of time. The
same holds for the endpoints, if I created a list of all endpoints needed, with
the structure I’d like, we could discuss that and make sure everyone is one the
same page. In the end we did these things, but we should have done them way
earlier in the project.

59

Motivation During some parts of the project, I was having some motivational
problems. They were largely caused by the current situation where we have to
work from home all day, live in a lock-down, and I was have some personal issues
as well. I found it really hard to set myself to work and to keep focused. I found
out that when I was video calling while working, my focus was a lot better.
Where we started of with three (online) project sessions a week, we ended with
video calling everyday, sometimes even in the evenings and weekends if some
tasks had to be finished. This greatly improved my focus, motivation, and
productivity. It was always fun with the project group, and I’m really grateful
that it helped me through this, at least for me, really difficult times.

60

Chapter 9

Conclusion

9.1 Project recap

The project in itself is an interesting project. During the whole duration of the
project, we were able to communicate properly and achieved most of what was
planned in the beginning. Deadlines, mostly the ones that were established by
ourselves in regards to implementations and features, were also met successfully.
Our initial aim for this project is to build something that we are proud of and
is usable to the University of Twente. As parts of the system still need work,
the system as it is delivered is not directly usable by the University of Twente.
Since the end result does not meet all of our expectations, we are not mostly
proud of the project. However, the process of the project itself is a valuable
experience in which we learned a lot.

9.2 Delivered system

The system as it is delivered can be considered as a minimum viable product,
with the notion that more extensive testing should be done to verify that the
system is stable. Therefore, the system as delivered is not ready to be used
at the University of Twente as it is, yet. Depending on the result of stability
testing, reconsideration of some design choices (described in 8.1.2) might be
necessary to come to a stable system. All features required for a standard exam
scenario are present. The system provides a base to further extend on.

9.3 Future

Besides a few more rounds of bug-fixes, if we were to keep working on this project
first-and-foremost would be to schedule and perform a full system test, since all
opportunities to do so during development fell through. A lot of minor deign
decisions during the project were made in haste, and given proper time and care

61

the database complexity and data formats of messages should be given another
pass. Afterwards, the system by its current spec would have been finished, and
work could start on additional features, such as screenshots & image transfer,
private teacher chats and live typing.

62

Bibliography

Council, E. (2016). on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data Protection Regula-
tion). Official Journal of the European Union.

Marx, G. (1999). What’s in a Name? Some Reflections on the Sociology of
Anonymity. Information Society, 15. https://doi .org/10 .1080/
019722499128565

Openid connect. (n.d.). Retrieved April 14, 2021, from https://openid.net/

connect/

Virzi, R. (1992). Refining the Test Phase of Usability Evaluation: How Many
Subjects Is Enough? Human Factors: The Journal of the Human Fac-
tors and Ergonomics Society, 34. https://doi .org/10 .1177/

001872089203400407

63

